RAMAKRISHNA MISSION VIDYAMANDIRA

(Residential Autonomous College under University of Calcutta)

FIRST YEAR B.A./B.SC. FIRST SEMESTER (July – December) 2014 Mid-Semester Examination, September 2014

Date : 15/09/2014

CHEMISTRY (Honours)

Time : 11 am – 1 pm

Paper : I

Full Marks : 50

[2]

[3]

[Use a separate answer book for each group]

<u>Group – A</u>

(Answer <u>Question No. 1 or 2</u> and <u>Question No. 3 or 4</u>)

1. a) A mixture of gas in a container of volume, V, composing of n₁, n₂, n₃ etc. no. of different gas molecules exerts the pressure, P at the T temperature. Show from kinetic theory of gas that—

$$\mathbf{P} = \mathbf{P}_1 + \mathbf{P}_2 + \mathbf{P}_3 + \dots,$$

where P₁, P₂, P₃ etc are the partial pressures exerted by the different gas molecules, respectively, at same temperature. [2]
i) Write the gas distribution function for velocity and explain the terms involved. [2]

- b) i) Write the gas distribution function for velocity and explain the terms involved.ii) When does the 1D velocity distribution curve for gas molecules flatten?
- c) Find out the molar specific heat for BF₃ molecule, according to law of equipartition of energy. [No need to describe the law] [2]
- a) The time required for a molecule to travel one meter is 1/C. Calculate the average time required for the molecules to travel one meter. [3]
 - b) Compare the a 1D and 3D velocity and speed distribution curves respectively at a temperature T. Cite the important features. [2]
 - c) Suppose that at some initial time all the molecules in container have same translational energy, $2 \cdot 0 \times 10^{-21}$ J. As time passes, the energies are distributed in Maxwellian way. Write down the expression for average energy. Also compute the final temperature of the system. [3]
- 3. a) 1 mol of gas in a leak proof cylinder fitted with a piston is allowed to expand (i) isothermally, (ii) adiabatically. State the type of the system in each case as isolated/closed/open. Give reasons. [2]
 - b) 2 mol of an ideal gas, initially at 400K, expands reversible following the condition $PV^2 = constant$ till the temperature falls to 300K. Calculate, W, Q and ΔU for the process. Given $\overline{C}_V = \frac{5}{2}R$. [3]
 - c) Show that work is not a state function, it is a path function.
- 4. a) Prove that PV^{γ} = constant for an ideal gas undergoing reversible, adiabatic expansion or compression. [3]
 - b) 1 mol of an ideal gas expands in two stages from (P₁, V₁, T) to (P₂, V₂, T). For the first stage the opposing pressure is P' and P₁ > P' > P₂ and for the second stage, the opposing pressure is P₂. Show that for maximum work, P' = $\sqrt{P_1P_2}$ and find out $|W_{max}|$. [3]

c) Show that:
$$C_{P} - C_{V} = \left[V - \left(\frac{\partial H}{\partial P} \right)_{T} \right] \left(\frac{\partial P}{\partial T} \right)_{V}.$$
 [2]

<u>Group – B</u>

(Answer <u>Question No. 5 or 6</u> and <u>Question No. 7 or 8</u>)

- 5. a) The C–H bond length of fluoromethane is shorter than those of methane —explain. [2]
 - b) Draw orbital picture of $H_2C = CH-CN$ indicating hybridisation state of C and N atoms. [2]

c) Arrange the following bond length in order of decreasing value with reason C–C, C–H, C=C, C–Cl and C–Br. [2]

[2]

[2]

[3]

- d) Between \angle FCF and \angle HCH bond angles in CH₂F₂ which one is smaller? Explain.
- a) Indicate whether the following pairs of compounds are identical, enantiomers or diastereomers. Justify your answer. [6]

b) Indicate the symmetry elements present in the following compounds.

7. a) Predict the relative order of C–C bond lengths in propane, propene and propyne with explanation. [2]
b) Why does the following structure not exist? [2]

- c) Give approximate bond angles each atom except hydrogen of $H_3C CH = N CH_3$. [2]
- d) Which one of chloroacetic acid and β -chloropropionic acid is stronger? [2]
- 8. a) Assign configurational designation (R/S) at the chiral centres of the following compounds. [3]

b) Write the structure of the following compounds as directed.

- i) D-2 butylmethyl ether (Fischer projection)
- ii) L phenylalanine (Fischer projection)
- iii) Erythro 3 bromo 2 butanol (Newman)
- c) Give Example of the following :
 - i) A meso compound having three chiral cemtres.
 - ii) A molecule having S_2 axis of symmetry.

<u>Group – C</u>

[2]

(Answer Question No. 9 or 10 and Question No. 11 or 12)

9.	a)	Compare and contrast between 4f block elements and 5f block elements.	[2]
	b)	Calculate using Slater's rule the effective nuclear charge on 4S and 3d electron of Bromine atom.	[2]
	c)	Explain why at room temperature (~30°C) metallic Galium is liquid.	[2]
	d)	Amongst MgCO ₃ and CaCO ₃ which is thermally more stable and why?	[2]
	e)	Write down the I.U.P.A.C name with symbol with atomic number 107 and 109.	[1]
10.	a)	Write notes on Lanthanide contraction, its causes and consequences.	[2]
	b)	Why do 'd' block elements exhibit variable valency?	[1]
	c)	Lithium Carbonate is soluble in alcohol where as other alkali metal carbonates do not —Explain.	[2]
	d)	Explain the stability of Auride ion with respect to Cupride ion.	[1]
	e)	Compare and contrast between (<u>any one</u>):	[2]
		i) Beryllium and Aluminium	
		ii) Boron and Silicon	
	f)	It is hard to separate Zircorium and Haufmium.	[1]
11.	a)	$\Psi(r)$ for the 1S orbital in a hydrogen atom has a very high value at $r = 0$. But the plot of radial	
		density vs 'r' passes through zero at $r = 0$ and has a maximum at 0.53Å. Explain.	[3]
	b)	The ground state electronic configuration of Cu is $[Ar]3d^{10}4S^1$ but not $[Ar]3d^94S^2$. Explain.	[2]
	c)	What is the minimum uncertainty in the velocity of an electron if we want to locate it within 0.01 Å	
		of the first Bohr radius in a hydrogen atom?	[2]
	d)	Write down the values of m_{ℓ} for ' ℓ ' = 1, and explain their significance.	[2]
12.	a)	Establish the Bohr's Quantum Restriction from de Broglie concept.	[2]
	b)	Discuss the penetrating power of the different orbitals (s,p,d,f) in the light of wave mechanical	
		model.	[2]
	c)	Determine the ground state term symbol for Cu-atom.	[2]
	d)	The 1^{∞} 1P values of He and Li are 24.5 ev and 5.4 ev respectively. Calculate the Z* value and screening constant for the outer most electron in the He and Li.	[3]

— × ——